Policy-Based Spectrum Access Control for Public Safety Cognitive Radio Systems

NPSTC Software Defined Radio Working Group
Interoperability Committee Meeting, Seattle, WA
17 September 2008

Peter Tenhula
Shared Spectrum Company
Vienna, Virginia
www.sharespectrum.com
703-761-2818 x105

Nancy Jesuale
NetCity, Inc.
Portland, Oregon
www.netcityengineering.com
503-936-2202
Agenda

• About SSC and NetCity

• Review of SSC’s Cognitive Radio Technology

• Overview of SSC’s NIJ-CommTech Project

• Focus on “Policy” Based Spectrum Access Control for Public Safety Cognitive Radio Systems

• Request for Feedback – Q&A
Disclaimer

This project is supported by Award No. 2007-DE-BX-K008 awarded by the National Institute of Justice, Office of Justice Programs, US Department of Justice.

The opinions, findings, and conclusions or recommendations expressed in this presentation are those of the presenters and do not necessarily reflect the views of the Department of Justice.
About SSC

• Dr. Mark McHenry, CEO & Founder
 – Former DARPA Program Manager
 – Engineer of the Year Award for DC Area (2006)
 – Member, Dept. of Commerce Spectrum Mgt Advisory Committee
• Team of 26+ engineers focused on spectrum access and software defined radio solutions
 – IEEE DySPAN 2007: Best paper and demonstration awards
• Built 1st deployable cognitive radio system
 – Prototype hardware units field tested and being sold
 – High power (10 W), Multi-Band (174-2680 MHz) transceiver
 – Modem based on IEEE 802.16d (WiMAX)
 – 100,000 lines of embedded software code
 – Policy-based, command and control software

• Partners integrating SSC technology & software for DoD
Achievements

• DARPA XG Phase III and other programs
 – Spectrum occupancy measurements
 – DSA algorithm and spectrum access rule development
 – DSA-based transceiver test bed
 – Interference avoidance field testing
 – DSA software-only upgrades to Harris and Thales hand-held radios

• 2002-2008, $24M DoD investment

• Field-tested in military environments

• Selected for NTIA/FCC Spectrum Sharing Innovation Test-Bed
About NetCity

• Established in 2001 to assist local governments with advanced communications technology planning and deployment
• Have assisted several local and state governments assess fiber optic, wireless, wi-fi and other business models for both public safety and general government networks
• Provide governance, economic, strategic and operational modeling and assessment
• Have worked with SSC since 2005
Agenda

• About SSC and NetCity

• **Review of SSC’s Cognitive Radio Technology**

 • Overview of SSC’s NIJ-CommTech Project

 • Focus on “Policy” Based Spectrum Access Control for Public Safety Cognitive Radio Systems

• Request for Feedback – Q&A
Cognitive Radio Technology

- SSC has developed software-defined, cognitive radios that sense and detect available spectrum through user-defined policies

 - Increase link range by selecting “best” frequency that minimizes propagation loss & interference
 - Improve the capacity of wireless systems
 - Enable robust spectrum pooling with peers
 - High communication availability and reliability
 - Avoid intended/unintended interferers
 - Obtain additional spectrum quickly
 - Efficiently and safely use licensed spectrum without displacing legacy systems
 - Pool spectrum resources with other licensees
 - Lease from other spectrum “owners”

Dynamic Spectrum Access (DSA)
Multi-Band Radio System

<table>
<thead>
<tr>
<th>DoD RF Board (MHz)</th>
<th>Public Safety RF Board (MHz)</th>
<th>Wireless (TV) RF Board (MHz)</th>
<th>Commercial RF Board (MHz)</th>
<th>Small Form Factor RF Board (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1215 – 1390</td>
<td>220 – 512</td>
<td>516 – 806</td>
<td>1390 – 1435</td>
<td></td>
</tr>
<tr>
<td>1435 – 1525</td>
<td>764 – 869</td>
<td></td>
<td>1670 – 2680</td>
<td></td>
</tr>
<tr>
<td>1755 – 1850</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2200 – 2290</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DSA 1000 / DSA 2000 / DSA 2100

- **DSA 1000**
 - 10 W (1 dB compression)
 - 20-1000 MHz
 - Antenna diversity

- **DSA 2100**
 - High Power, Long Range

The first affordable, fieldable DSA radio development platform!
Software Architecture

- **XML-based Policy Language**
- **Policy Analyzer** validates externally created spectrum access policies for consistency and accuracy.
- **Policy Administrator** securely disseminates policies using PKI.
- **Policy Enforcer** ensures that each DSA radio adheres to the policy rules.
- **Ultra-sensitive detectors** identify unused spectrum.
- **Rendezvous** and **Frequency Selection** algorithms select which channels to use.
- **Scheduler** manages which detectors are used, what frequency the devices use, and when the detectors and tuner/modems operate.
Agenda

• About SSC and NetCity

• Review of SSC's Cognitive Radio Technology

• **Overview of SSC’s NIJ-CommTech Project**

 • Focus on “Policy” Based Spectrum Access Control for Public Safety Cognitive Radio Systems

• Request for Feedback – Q&A
Project Objectives

- **Address** short- and long-term spectrum **access** problems that detract from core missions

- **Focus** on concerns about cognitive radio technologies
 (e.g., Interference, Device Integrity, Security, Authentication, Unproven and Untested Technology)

- **Gather** and **develop** communications, command and control requirements

- **Design** system for varied communications needs and applications
 (e.g., airborne surveillance; mobile voice, data, video)

- **Show** how end-to-end, multi-band cognitive radio system can be tailored, safely managed and effectively controlled **while experiencing** benefits of dynamic spectrum and bandwidth access

- **Enable** use for day-to-day activities and in rapid response to a threat, disaster or catastrophe
Team, Support & Outreach

Development process directly involves key stakeholders; addresses their requirements

➢ SSC Consultants:
 Nancy Jesuale (former Portland, OR Official)
 Prof. Dale Hatfield (former FCC Chief Engineer, Univ. of Colorado)

Supporters:

Outreach & Resources:
Project Overview
Cognitive Radio Access Management (CRAM) Subsystem

SSC’s dynamic spectrum access system meets wide variety of communications needs while giving users CRAM sub-system that provides ability to securely write and disseminate policies to cognitive radios.
Project Tasks

Phase I Tasks

<table>
<thead>
<tr>
<th>Task 1: Gather Data and Collect User Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Washington, DC Spectrum Occupancy Measurements</td>
</tr>
<tr>
<td>✓ Initial Requirements Collection</td>
</tr>
<tr>
<td>✓ Practitioner Outreach/Feedback – NIJ CommTech TWG</td>
</tr>
<tr>
<td>Regulatory Outreach/Feedback – ✓ NTIA and FCC</td>
</tr>
<tr>
<td>System Trade-Off Analysis (in progress)</td>
</tr>
<tr>
<td>Stakeholder Feedback & Focus Groups [TONIGHT!!]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Task 2: Design CRAM System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customize Software and Develop Policy Tools</td>
</tr>
</tbody>
</table>

| Task 3: Initial Lab Demonstration |
Follow-Up Opportunities

• Conduct live field demonstrations of CR system during first responder exercises in urban environments
 – Collaborate with Fed, State & Local Officials
 – Show how DSA radio/network policies provide secure and reliable command and control

• Leverage SSC’s 802.16-based multi-band radio platform for incident area test and evaluation of broadband applications
 – Prove interference avoidance and coexistence with legacy systems
 – Ensure building penetration and link range/quality
 – Rapidly deploy ad hoc network and backhaul

• Integrate DSA software in advanced military/public safety radios (e.g., Thales Liberty radio and Harris Unity radio)
 – Show interoperability with legacy systems with both waveform and frequency agility

• Use FCC/NTIA Test-Bed Frequencies
 – 410-420 MHz and 470-512 MHz
Agenda

- About SSC and NetCity
- Review of SSC’s Cognitive Radio Technology
- Overview of SSC’s NIJ-CommTech Project
- Focus on “Policy” Based Spectrum Access Control for Public Safety Cognitive Radio Systems
- Request for Feedback – Q&A
Benefits

- **Flexibility**: High-level policies apply to multiple devices
- **Configuration ease**: Modify any configuration, setting, or rule; devices automatically adapt
- **Autonomy**: Devices autonomously balance resources and optimize network as permitted by policies
- **Assurance**: Policies from multiple stakeholders are enforced locally on every device
- **Transparency**: High-level specifications verified by theorem-proving systems for correctness at any time
- **Ease of policy authoring**: Declarative language creates a policy abstracting low-level requirements
- **Secure policy management and distribution**: Control of policies and monitor device’s behavior

- Spectrum Efficiency
- Rapid Network Set Up
- Multi-Band Devices
- Broadband Applications
- Flexibility for State & Local Governments
- Remote Spectrum & Network Management
- Multiple “Policy” Sources

- **Bottom Line**: TRUST in Policy-Controlled Cognitive Radio Devices for Public Safety
Regulators need assurance that devices access permitted spectrum only & “behave” according to rules.

Operators need assurance that they can configure devices properly to make most efficient use of spectrum/network resources.

Other users need assurance that their systems are not harmed.

Policy Control

Provides Necessary Trust, Security and Assurance
End-to-End Policy System

User Space:
- SSC User Console
 - Monitor, Download Logs
 - Request Update
 - Turn On/Off Emergency
- Device
- Device
- Device

Operator Space:
- SSC Policy Administration Console
 - Monitor, Download Logs
 - Push Updates, Switch Modes
- SSC Policy Automated Update Service
 - Synchronize, Download Updates
 - Upload Logs
- XG Policy Configuration Database
 - Check, Download Updates
 - Upload Logs
- Plan Configurations Per Radio Group
- Assign Membership
- Check, Download Updates
- Plan Configurations Per Radio Group
- Assign Membership
- Upload Policy Updates
- Add, Overwrite, Delete Policy

Regulator Space:
- SSC Policy Authoring Suite
 - Check, Download Updates
 - Add, Overwrite, Delete Policy
- Operator’s XG Policy Repository
- Regulator A’s Policy Repository
- Regulator B’s Policy Repository
Cog Radio just one component in the policy framework
- Includes policy enforcer, reasoner, manager, database library, security library, geographical library, compression library, and remote control
- Prototypes and reference designs available now

Web User Interface
- Off-line policy configuration for groups of radios
- On-line policy management of one or more radios
- On-line performance querying of each radio
- Customizing for public safety

Administration Console
- Includes policy enforcer, reasoner, manager, database library, security library, geographical library, compression library, and remote control
- Prototypes and reference designs available now

Authoring Tool
- Wizard and expert mode for writing/editing policies
- Customizing for public safety
Cog Radio Device

Multi-band cognitive device includes Cognitive Controller and Conformance Enforcer

Cognitive Controller
- Monitors and dynamically adjusts device configuration in order to optimize its and network performance
- Guards cognitive controller to ensure the device does not enter an invalid state
- Suggests valid states to controller by computing constrained opportunities
- Monitors and reconfigures device parameters

Conformance Enforcer
- Ensures that the cognitive controller does not violate constraints set forth by user, network, and regulators.
- Monitors the device and notifies “authority” if policies are violated

User-Specific RF Front End for Public Safety Bands:
- 138-174, 225-512 & 764-869 MHz
- Integrated 802.16-based modem, SSC Detector & CPU

- RF Interfaces:
 - 1 or 2 Antenna Ports
 - External PA for > 100mW
- Control interfaces:
 - 1 Ethernet Port
 - GPS Timing Port
- Power: 12V (~15W w/o PA)
Spectrum Access Policy Types

Enable Interference-Free and Frequency-Agile Operation

<table>
<thead>
<tr>
<th>Listen-Before-Talk (LBT) based types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same up and downlink frequencies</td>
</tr>
<tr>
<td>Different, but known, up and downlink frequencies</td>
</tr>
<tr>
<td>Different, but unknown, up and downlink frequencies, band plan known</td>
</tr>
<tr>
<td>TV band (TV detector)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Connectivity based types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beacon signal reception required to use band</td>
</tr>
<tr>
<td>Connectivity requirement for any policy (can use certain bands only if connected to Spectrum Manager)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group Behavior based types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1 - Abandon channel if any node within certain range detects Non-cooperative signal</td>
</tr>
<tr>
<td>Type 2 - Determine TX power based on estimated interference probability (Belief, Disbelief, and Ignorance estimates fused)</td>
</tr>
<tr>
<td>Node Identify restrictions (e.g., use while airborne prohibited, use only in fixed applications)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spatial types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geographic border field strength limits</td>
</tr>
<tr>
<td>Database geographic/TV coverage area based</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temporal types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time of Day restrictions</td>
</tr>
<tr>
<td>Authorization for finite time duration (with periodic renewals)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Device based types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ability to measure second and third harmonic</td>
</tr>
<tr>
<td>TX power spectrum density limit</td>
</tr>
<tr>
<td>Geo-location capability</td>
</tr>
<tr>
<td>Adjustable I/N Limit for any policy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distributed Control based types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automated policy updates if feedback indicates that existing policy is insufficient for non-interference operations</td>
</tr>
<tr>
<td>Automated policy updates notification of policy revocation or update by policy authority</td>
</tr>
</tbody>
</table>
Multiple Policy Sources

Peer-to-Peer and Hierarchical Spectrum Control

Equipment Data (DD1494 – NTIA/DoD) Policies
- ~200 radio types
- Frequency range, TX power, NF, BW, ...
- Detection/false alarm rule sets – Radar pulse pattern, FM modulation, etc
- LBT rule threshold parameter spreadsheet
- Ex: RT-1107(V)/WSC-3(V) operates from 225-399 MHz, 5 kHz BW, ...

Regional Policies (Assignment Database)
- Limitations of frequency range, TX power, BW
- Service (Fixed, mobile, airborne, ...)
- Frequency range, TX power, NF, BW, ...
- LBT rule time parameters
- Geographic, time limitations
- Ex: AN/GRT-022 is used from 225-320 MHz only, -6 dB I/N

Local Party-to-Party Policies
- Geographic, time
- Spectrum leasing limitations
- User priority
- LBT threshold and time parameters
- Ex: 440 MHz is only used occasionally for radar testing. You can use this channel if you have a monitoring system with an elevated antenna within LOS of Andrews AFB is used to detect (every five minutes) if we are using the radar transmitter or not. Only groups that I provide a “certificate” to are allowed this privilege.

National Rules Policies
- Geographic, time
- Spectrum leasing limitations
- User priority
- LBT threshold and time parameters
- Policy dissemination limitations
- Ex: 243 MHz used only for emergency

XML-Based high-level descriptive language

DSA System
- DSA radio operates on all of the polices to decide “proper” operation
NIMs and ICS: Policy Sources?

- Incidents happen, grow, develop, and resolve
- Multiple jurisdictions may be involved
- National, state and local resources may be involved
- DSA radio systems can create tactical and operational networks on-the-fly
- Incident commanders can control radio resources (spectrum, capability, applications, etc.)

How can NIMs and ICS guide policy development?
A network in its “steady-state” prior to incident & follows static policies for radio operation, authentication, spectrum access, etc.
As incident begins, incident commander identified. As IC begins managing response resources, cog radios activate/receive new policies related to each user’s role in the incident.
Full Array of Ad-hoc Incident Communications Networks

As incident develops, many tactical networks established & radios are authenticated according to user’s role.
Conclusions

Cognitive Radio Technology:

1. Is here . . . Now

2. Must earn the trust of Public Safety users before wide-spread or mission-critical deployment

3. Can be safely and effectively deployed through policy-based control mechanisms . . . with policies based on current public safety best practices and existing rules
Agenda

• About SSC and NetCity

• Review of SSC’s Cognitive Radio Technology

• Overview of SSC’s NIJ-CommTech Project

• Focus on “Policy” Based Spectrum Access Control for Public Safety Cognitive Radio Systems

• Request for Feedback – Q&A
Invitation

Cognitive Radios for Public Safety
Invitation to Stakeholders Focus Group

Tonight, Tuesday, September 16, 2008
5:45 – 7:30 pm
(Immediately following the NPSTC committee meetings)

Spring Room (4th Floor), Renaissance Seattle Hotel
Refreshments will be served
Please see or email Nancy Jesuale
njesuale@netcityengineering.com
Tonight’s Focus Group

Desired Outcomes:

– Validation and prioritization of public safety spectrum, network, authentication, security and bandwidth requirements

– Identification of reliable sources (e.g., rules, plans, agreements, etc.) from which to derive spectrum access “policies” for broadband public safety CR systems
Thanks!